On a Lefschetz-type phenomenon for elliptic Calabi-Yaus
نویسندگان
چکیده
A bstract We consider 18 families of elliptic Calabi-Yaus which arise in constructing F -theory compactifications string vacua, and show each case that the upper Hodge diamond a crepant resolution associated Weierstrass model coincides with (blown up) projective bundle is naturally embedded. Such results are unexpected, as we does not satisfy hypotheses Lefschetz hyperplane theorem. In light such findings, suspect all ‘Lefschetz-type phenomenon’.
منابع مشابه
Supergravity on R × S1/Z2 and singular Calabi-Yaus
We discuss the moduli space singularities that are generally present in five-dimensional vector-coupled supergravity on a spactime of the form R4 × S/Z2, with vector fields surviving on the Z2 fixed planes. The framework of supergravity is necessarily ambiguous when it comes to the non-singular embedding theory, so we focus on those models coming from Calabi-Yau three-folds with wrapped membranes.
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولA Lefschetz Fixed Point Formula for Elliptic Differential Operators
Introduction. The classical Lefschetz fixed point formula expresses, under suitable circumstances, the number of fixed points of a continuous map ƒ : X-+X in terms of the transformation induced by ƒ on the cohomology of X. If X is not just a topological space but has some further structure, and if this structure is preserved by ƒ, one would expect to be able to refine the Lefschetz formula and ...
متن کاملA Cohen-Lenstra phenomenon for elliptic curves
Given an elliptic curve E and a finite Abelian group G, we consider the problem of counting the number of primes p for which the group of points modulo p is isomorphic to G. Under a certain conjecture concerning the distribution of primes in short intervals, we obtain an asymptotic formula for this problem on average over a family of elliptic curves.
متن کاملA Lefschetz-type Coincidence Theorem
A Lefschetz-type coincidence theorem for two maps f, g : X → Y from an arbitrary topological space to a manifold is given: Ifg = λfg, that is, the coincidence index is equal to the Lefschetz number. It follows that if λfg 6= 0 then there is an x ∈ X such that f(x) = g(x). In particular, the theorem contains well-known coincidence results for (i) X,Y manifolds, f boundary-preserving, and (ii) Y ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of High Energy Physics
سال: 2022
ISSN: ['1127-2236', '1126-6708', '1029-8479']
DOI: https://doi.org/10.1007/jhep04(2022)141